This activity involves rounding four-digit numbers to the nearest thousand.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Delight your friends with this cunning trick! Can you explain how it works?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

An investigation that gives you the opportunity to make and justify predictions.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Can you find the values at the vertices when you know the values on the edges?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

How many centimetres of rope will I need to make another mat just like the one I have here?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

What happens when you round these numbers to the nearest whole number?