In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Delight your friends with this cunning trick! Can you explain how it works?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Find out what a "fault-free" rectangle is and try to make some of your own.

This task follows on from Build it Up and takes the ideas into three dimensions!

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Can you find all the ways to get 15 at the top of this triangle of numbers?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Explore the effect of reflecting in two intersecting mirror lines.

Here are two kinds of spirals for you to explore. What do you notice?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Can you explain the strategy for winning this game with any target?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Explore the effect of reflecting in two parallel mirror lines.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?