Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Find out what a "fault-free" rectangle is and try to make some of your own.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Can you find the values at the vertices when you know the values on the edges?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

It starts quite simple but great opportunities for number discoveries and patterns!

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

What happens when you round these numbers to the nearest whole number?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

How many centimetres of rope will I need to make another mat just like the one I have here?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

What happens when you round these three-digit numbers to the nearest 100?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?