This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

It would be nice to have a strategy for disentangling any tangled ropes...

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

An investigation that gives you the opportunity to make and justify predictions.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Can all unit fractions be written as the sum of two unit fractions?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

What happens when you round these three-digit numbers to the nearest 100?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

This activity involves rounding four-digit numbers to the nearest thousand.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

Can you find the values at the vertices when you know the values on the edges?

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .