Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Delight your friends with this cunning trick! Can you explain how it works?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

An investigation that gives you the opportunity to make and justify predictions.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Find out what a "fault-free" rectangle is and try to make some of your own.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

How many centimetres of rope will I need to make another mat just like the one I have here?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?