For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Delight your friends with this cunning trick! Can you explain how it works?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Got It game for an adult and child. How can you play so that you know you will always win?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Find out what a "fault-free" rectangle is and try to make some of your own.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

An investigation that gives you the opportunity to make and justify predictions.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How many centimetres of rope will I need to make another mat just like the one I have here?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Here are two kinds of spirals for you to explore. What do you notice?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.