Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Delight your friends with this cunning trick! Can you explain how it works?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Got It game for an adult and child. How can you play so that you know you will always win?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How many centimetres of rope will I need to make another mat just like the one I have here?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Find out what a "fault-free" rectangle is and try to make some of your own.

An investigation that gives you the opportunity to make and justify predictions.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?