What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

How many centimetres of rope will I need to make another mat just like the one I have here?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Here are two kinds of spirals for you to explore. What do you notice?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Can you describe this route to infinity? Where will the arrows take you next?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Charlie has moved between countries and the average income of both has increased. How can this be so?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .