A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Got It game for an adult and child. How can you play so that you know you will always win?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Find out what a "fault-free" rectangle is and try to make some of your own.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Delight your friends with this cunning trick! Can you explain how it works?

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Charlie has moved between countries and the average income of both has increased. How can this be so?

A package contains a set of resources designed to develop pupils’ mathematical thinking. This package places a particular emphasis on “generalising” and is designed to meet the. . . .