A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Find out what a "fault-free" rectangle is and try to make some of your own.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Can you explain the strategy for winning this game with any target?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

It would be nice to have a strategy for disentangling any tangled ropes...

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

This task follows on from Build it Up and takes the ideas into three dimensions!

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Can you find all the ways to get 15 at the top of this triangle of numbers?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This activity involves rounding four-digit numbers to the nearest thousand.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

What happens when you round these numbers to the nearest whole number?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Got It game for an adult and child. How can you play so that you know you will always win?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.