Can you work out how to win this game of Nim? Does it matter if you go first or second?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you explain the strategy for winning this game with any target?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Got It game for an adult and child. How can you play so that you know you will always win?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Can you find all the ways to get 15 at the top of this triangle of numbers?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

This task follows on from Build it Up and takes the ideas into three dimensions!

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

This activity involves rounding four-digit numbers to the nearest thousand.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4