Can you work out how to win this game of Nim? Does it matter if you go first or second?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Here are two kinds of spirals for you to explore. What do you notice?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Got It game for an adult and child. How can you play so that you know you will always win?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Find out what a "fault-free" rectangle is and try to make some of your own.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.