Find out what a "fault-free" rectangle is and try to make some of your own.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Delight your friends with this cunning trick! Can you explain how it works?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Here are two kinds of spirals for you to explore. What do you notice?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Got It game for an adult and child. How can you play so that you know you will always win?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

How many moves does it take to swap over some red and blue frogs? Do you have a method?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.