Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Can you explain the strategy for winning this game with any target?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Find out what a "fault-free" rectangle is and try to make some of your own.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This activity involves rounding four-digit numbers to the nearest thousand.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Here are two kinds of spirals for you to explore. What do you notice?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Got It game for an adult and child. How can you play so that you know you will always win?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

This task follows on from Build it Up and takes the ideas into three dimensions!

Delight your friends with this cunning trick! Can you explain how it works?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Are these statements relating to odd and even numbers always true, sometimes true or never true?