This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This task follows on from Build it Up and takes the ideas into three dimensions!

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Here are two kinds of spirals for you to explore. What do you notice?

Can you explain the strategy for winning this game with any target?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

An investigation that gives you the opportunity to make and justify predictions.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Find out what a "fault-free" rectangle is and try to make some of your own.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?