If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Can you describe this route to infinity? Where will the arrows take you next?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

It would be nice to have a strategy for disentangling any tangled ropes...

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Explore the effect of reflecting in two intersecting mirror lines.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Charlie has moved between countries and the average income of both has increased. How can this be so?

Here are two kinds of spirals for you to explore. What do you notice?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This activity involves rounding four-digit numbers to the nearest thousand.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

It starts quite simple but great opportunities for number discoveries and patterns!