Can you work out how to win this game of Nim? Does it matter if you go first or second?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Find out what a "fault-free" rectangle is and try to make some of your own.

Here are two kinds of spirals for you to explore. What do you notice?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Delight your friends with this cunning trick! Can you explain how it works?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Can you find the values at the vertices when you know the values on the edges?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

It would be nice to have a strategy for disentangling any tangled ropes...

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

This activity involves rounding four-digit numbers to the nearest thousand.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!