Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

This challenge is about finding the difference between numbers which have the same tens digit.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

An investigation that gives you the opportunity to make and justify predictions.

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This task follows on from Build it Up and takes the ideas into three dimensions!

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Can you find all the ways to get 15 at the top of this triangle of numbers?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Got It game for an adult and child. How can you play so that you know you will always win?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Are these statements always true, sometimes true or never true?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

How many centimetres of rope will I need to make another mat just like the one I have here?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

What happens when you round these numbers to the nearest whole number?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Find out what a "fault-free" rectangle is and try to make some of your own.

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?