This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Here are two kinds of spirals for you to explore. What do you notice?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This activity involves rounding four-digit numbers to the nearest thousand.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

Got It game for an adult and child. How can you play so that you know you will always win?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

This challenge is about finding the difference between numbers which have the same tens digit.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

What happens when you round these three-digit numbers to the nearest 100?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these numbers to the nearest whole number?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.