Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

This is a game for two players. Can you find out how to be the first to get to 12 o'clock?

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Find out what a "fault-free" rectangle is and try to make some of your own.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

This challenge is about finding the difference between numbers which have the same tens digit.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

It starts quite simple but great opportunities for number discoveries and patterns!

What happens when you round these numbers to the nearest whole number?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

What happens when you round these three-digit numbers to the nearest 100?

This activity involves rounding four-digit numbers to the nearest thousand.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.