Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Here are two kinds of spirals for you to explore. What do you notice?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

An investigation that gives you the opportunity to make and justify predictions.

How many centimetres of rope will I need to make another mat just like the one I have here?

It starts quite simple but great opportunities for number discoveries and patterns!

Nim-7 game for an adult and child. Who will be the one to take the last counter?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Stop the Clock game for an adult and child. How can you make sure you always win this game?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

This task follows on from Build it Up and takes the ideas into three dimensions!

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This challenge is about finding the difference between numbers which have the same tens digit.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you find all the ways to get 15 at the top of this triangle of numbers?

This activity involves rounding four-digit numbers to the nearest thousand.

What happens when you round these numbers to the nearest whole number?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Find out what a "fault-free" rectangle is and try to make some of your own.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

This is a game for two players. Can you find out how to be the first to get to 12 o'clock?