An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Here are two kinds of spirals for you to explore. What do you notice?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Find out what a "fault-free" rectangle is and try to make some of your own.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

Stop the Clock game for an adult and child. How can you make sure you always win this game?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

This is a game for two players. Can you find out how to be the first to get to 12 o'clock?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

This activity involves rounding four-digit numbers to the nearest thousand.

It starts quite simple but great opportunities for number discoveries and patterns!

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Got It game for an adult and child. How can you play so that you know you will always win?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Are these statements relating to calculation and properties of shapes always true, sometimes true or never true?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?