Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Vital?:

Filter by: Content type:
Stage:
Challenge level:

There are 183 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

Knight Defeated

Stage: 4 Challenge Level:

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

Magic W Wrap Up

Stage: 5 Challenge Level:

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

Russian Cubes

Stage: 4 Challenge Level:

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

Cube Net

Stage: 5 Challenge Level:

How many tours visit each vertex of a cube once and only once? How many return to the starting point?

Transitivity

Stage: 5

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

Stage: 5 Short Challenge Level:

Sort these mathematical propositions into a series of 8 correct statements.

The Great Weights Puzzle

Stage: 4 Challenge Level:

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Stage: 3, 4 and 5 Challenge Level:

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Doodles

Stage: 4 Challenge Level:

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

Postage

Stage: 4 Challenge Level:

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Proof of Pick's Theorem

Stage: 5 Challenge Level:

Follow the hints and prove Pick's Theorem.

Towering Trapeziums

Stage: 4 Challenge Level:

Can you find the areas of the trapezia in this sequence?

Unit Interval

Stage: 4 and 5 Challenge Level:

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Pareq Exists

Stage: 4 Challenge Level:

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Proof: A Brief Historical Survey

Stage: 4 and 5

If you think that mathematical proof is really clearcut and universal then you should read this article.

Thousand Words

Stage: 5 Challenge Level:

Here the diagram says it all. Can you find the diagram?

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

To Prove or Not to Prove

Stage: 4 and 5

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Sperner's Lemma

Stage: 5

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Some Circuits in Graph or Network Theory

Stage: 4 and 5

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Sprouts Explained

Stage: 2, 3, 4 and 5

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Exhaustion

Stage: 5 Challenge Level:

Find the positive integer solutions of the equation (1+1/a)(1+1/b)(1+1/c) = 2

A Computer Program to Find Magic Squares

Stage: 5

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Polite Numbers

Stage: 5 Challenge Level:

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Pair Squares

Stage: 5 Challenge Level:

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Whole Number Dynamics V

Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Stage: 5 Challenge Level:

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level:

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

Whole Number Dynamics III

Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Geometry and Gravity 2

Stage: 3, 4 and 5

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

Euler's Formula and Topology

Stage: 5

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

Binomial

Stage: 5 Challenge Level:

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Euclid's Algorithm II

Stage: 5

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

More Sums of Squares

Stage: 5

Tom writes about expressing numbers as the sums of three squares.

Mouhefanggai

Stage: 4

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Water Pistols

Stage: 5 Challenge Level:

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Zig Zag

Stage: 4 Challenge Level:

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

Contrary Logic

Stage: 5 Challenge Level:

Can you invert the logic to prove these statements?

Dodgy Proofs

Stage: 5 Challenge Level:

These proofs are wrong. Can you see why?

Diverging

Stage: 5 Challenge Level:

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Find the Fake

Stage: 4 Challenge Level:

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

A Long Time at the Till

Stage: 4 and 5 Challenge Level:

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Direct Logic

Stage: 5 Challenge Level:

Can you work through these direct proofs, using our interactive proof sorters?

Iffy Logic

Stage: 4 and 5 Challenge Level:

Can you rearrange the cards to make a series of correct mathematical statements?

An Introduction to Number Theory

Stage: 5

An introduction to some beautiful results of Number Theory

Tree Graphs

Stage: 5 Challenge Level:

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

L-triominoes

Stage: 4 Challenge Level:

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Converse

Stage: 4 Challenge Level:

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?