An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Find the positive integer solutions of the equation (1+1/a)(1+1/b)(1+1/c) = 2

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Can you find the value of this function involving algebraic fractions for x=2000?

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

An article which gives an account of some properties of magic squares.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

If you think that mathematical proof is really clearcut and universal then you should read this article.

Can you work through these direct proofs, using our interactive proof sorters?

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.