Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Farey Fibonacci:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 183 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Plus or Minus

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

problem icon

Golden Eggs

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

problem icon

The Golden Ratio, Fibonacci Numbers and Continued Fractions.

Stage: 4

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

problem icon

More Sums of Squares

Stage: 5

Tom writes about expressing numbers as the sums of three squares.

problem icon

Water Pistols

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

problem icon

Proof Sorter - Quadratic Equation

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

problem icon

Power Quady

Stage: 5 Challenge Level: Challenge Level:1

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

problem icon

How Many Solutions?

Stage: 5 Challenge Level: Challenge Level:1

Find all the solutions to the this equation.

problem icon

Yih or Luk Tsut K'i or Three Men's Morris

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

problem icon

Square Pair Circles

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

problem icon

Big, Bigger, Biggest

Stage: 5 Challenge Level: Challenge Level:1

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

problem icon

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

problem icon

A Biggy

Stage: 4 Challenge Level: Challenge Level:1

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

problem icon

Target Six

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

problem icon

To Prove or Not to Prove

Stage: 4 and 5

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

problem icon

Contrary Logic

Stage: 5 Challenge Level: Challenge Level:1

Can you invert the logic to prove these statements?

problem icon

There's a Limit

Stage: 4 and 5 Challenge Level: Challenge Level:1

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

problem icon

Iffy Logic

Stage: 4 and 5 Challenge Level: Challenge Level:1

Can you rearrange the cards to make a series of correct mathematical statements?

problem icon

Pent

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

problem icon

Sperner's Lemma

Stage: 5

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

problem icon

Proof of Pick's Theorem

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Follow the hints and prove Pick's Theorem.

problem icon

Janine's Conjecture

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

Advent Calendar 2011 - Secondary

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

problem icon

Dodgy Proofs

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These proofs are wrong. Can you see why?

problem icon

Binomial

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

problem icon

The Clue Is in the Question

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

problem icon

Square Mean

Stage: 4 Challenge Level: Challenge Level:1

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

problem icon

Modulus Arithmetic and a Solution to Dirisibly Yours

Stage: 5

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

problem icon

Continued Fractions II

Stage: 5

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

problem icon

Natural Sum

Stage: 4 Challenge Level: Challenge Level:1

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

problem icon

The Root Cause

Stage: 5 Challenge Level: Challenge Level:1

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

problem icon

Recent Developments on S.P. Numbers

Stage: 5

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

problem icon

Notty Logic

Stage: 5 Challenge Level: Challenge Level:1

Have a go at being mathematically negative, by negating these statements.

problem icon

Long Short

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

problem icon

Sums of Squares and Sums of Cubes

Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

problem icon

Archimedes and Numerical Roots

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

problem icon

Where Do We Get Our Feet Wet?

Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

problem icon

Tetra Inequalities

Stage: 5 Challenge Level: Challenge Level:1

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

problem icon

Diverging

Stage: 5 Challenge Level: Challenge Level:1

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

problem icon

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

problem icon

Tree Graphs

Stage: 5 Challenge Level: Challenge Level:1

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

problem icon

Direct Logic

Stage: 5 Challenge Level: Challenge Level:1

Can you work through these direct proofs, using our interactive proof sorters?

problem icon

Rational Roots

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

problem icon

Basic Rhythms

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Explore a number pattern which has the same symmetries in different bases.

problem icon

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

problem icon

Symmetric Tangles

Stage: 4

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

problem icon

The Great Weights Puzzle

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

problem icon

Multiplication Square

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Pythagorean Golden Means

Stage: 5 Challenge Level: Challenge Level:1

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

problem icon

Diophantine N-tuples

Stage: 4 Challenge Level: Challenge Level:1

Can you explain why a sequence of operations always gives you perfect squares?