Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Calculus Countdown:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 182 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Fractional Calculus III

Stage: 5

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

problem icon

Janine's Conjecture

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

problem icon

Lens Angle

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

problem icon

Integral Inequality

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An inequality involving integrals of squares of functions.

problem icon

Generally Geometric

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

problem icon

AMGM

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you use the diagram to prove the AM-GM inequality?

problem icon

Look Before You Leap

Stage: 5 Challenge Level: Challenge Level:1

Relate these algebraic expressions to geometrical diagrams.

problem icon

Logic, Truth Tables and Switching Circuits

Stage: 3, 4 and 5

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

problem icon

And So on - and on -and On

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find the value of this function involving algebraic fractions for x=2000?

problem icon

Truth Tables and Electronic Circuits

Stage: 3, 4 and 5

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

problem icon

Mediant

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

problem icon

Leonardo's Problem

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

problem icon

Telescoping Functions

Stage: 5

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

problem icon

Pair Squares

Stage: 5 Challenge Level: Challenge Level:1

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

problem icon

Logic, Truth Tables and Switching Circuits Challenge

Stage: 3, 4 and 5

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

problem icon

Common Divisor

Stage: 4 Challenge Level: Challenge Level:1

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

problem icon

Stonehenge

Stage: 5 Challenge Level: Challenge Level:1

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

problem icon

Multiplication Square

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Polynomial Relations

Stage: 5 Challenge Level: Challenge Level:1

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

problem icon

Mechanical Integration

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

problem icon

Unit Interval

Stage: 4 and 5 Challenge Level: Challenge Level:1

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

problem icon

Pythagoras Proofs

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make sense of these three proofs of Pythagoras' Theorem?

problem icon

Interpolating Polynomials

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

problem icon

Mind Your Ps and Qs

Stage: 5 Short Challenge Level: Challenge Level:2 Challenge Level:2

Sort these mathematical propositions into a series of 8 correct statements.

problem icon

Diverging

Stage: 5 Challenge Level: Challenge Level:1

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

problem icon

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

problem icon

Picturing Pythagorean Triples

Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

problem icon

Try to Win

Stage: 5

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

problem icon

Where Do We Get Our Feet Wet?

Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

problem icon

Advent Calendar 2011 - Secondary

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

problem icon

Yih or Luk Tsut K'i or Three Men's Morris

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

problem icon

Modulus Arithmetic and a Solution to Differences

Stage: 5

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

problem icon

More Dicey Decisions

Stage: 5 Challenge Level: Challenge Level:1

The twelve edge totals of a standard six-sided die are distributed symmetrically. Will the same symmetry emerge with a dodecahedral die?

problem icon

A Long Time at the Till

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

problem icon

Continued Fractions II

Stage: 5

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

problem icon

Modulus Arithmetic and a Solution to Dirisibly Yours

Stage: 5

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

problem icon

More Sums of Squares

Stage: 5

Tom writes about expressing numbers as the sums of three squares.

problem icon

Dodgy Proofs

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These proofs are wrong. Can you see why?

problem icon

Sums of Squares and Sums of Cubes

Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

problem icon

Transitivity

Stage: 5

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

problem icon

Recent Developments on S.P. Numbers

Stage: 5

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

problem icon

A Knight's Journey

Stage: 4 and 5

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

problem icon

Proof of Pick's Theorem

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Follow the hints and prove Pick's Theorem.

problem icon

Particularly General

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

By proving these particular identities, prove the existence of general cases.

problem icon

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

problem icon

Little and Large

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

problem icon

Take Three from Five

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

problem icon

Why 24?

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

problem icon

Calculating with Cosines

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?