Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Dodgy Proofs:

Filter by: Content type:
Stage:
Challenge level:

There are 186 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

Whole Number Dynamics III

Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Iffy Logic

Stage: 4 and 5 Challenge Level:

Can you rearrange the cards to make a series of correct mathematical statements?

Tree Graphs

Stage: 5 Challenge Level:

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

To Prove or Not to Prove

Stage: 4 and 5

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Diverging

Stage: 5 Challenge Level:

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Sperner's Lemma

Stage: 5

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Dodgy Proofs

Stage: 5 Challenge Level:

These proofs are wrong. Can you see why?

An Introduction to Number Theory

Stage: 5

An introduction to some beautiful results of Number Theory

Whole Number Dynamics V

Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Impossible Sandwiches

Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Whole Number Dynamics IV

Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

Where Do We Get Our Feet Wet?

Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Notty Logic

Stage: 5 Challenge Level:

Have a go at being mathematically negative, by negating these statements.

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

Recent Developments on S.P. Numbers

Stage: 5

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

Stage: 4 and 5 Challenge Level:

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Stage: 5 Challenge Level:

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Proof of Pick's Theorem

Stage: 5 Challenge Level:

Follow the hints and prove Pick's Theorem.

Unit Interval

Stage: 4 and 5 Challenge Level:

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

The Great Weights Puzzle

Stage: 4 Challenge Level:

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Stage: 3, 4 and 5 Challenge Level:

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Whole Number Dynamics I

Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

Direct Logic

Stage: 5 Challenge Level:

Can you work through these direct proofs, using our interactive proof sorters?

Some Circuits in Graph or Network Theory

Stage: 4 and 5

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Sprouts Explained

Stage: 2, 3, 4 and 5

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

The Clue Is in the Question

Stage: 5 Challenge Level:

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

Water Pistols

Stage: 5 Challenge Level:

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Thousand Words

Stage: 5 Challenge Level:

Here the diagram says it all. Can you find the diagram?

Contrary Logic

Stage: 5 Challenge Level:

Can you invert the logic to prove these statements?

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Long Short

Stage: 4 Challenge Level:

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Binomial

Stage: 5 Challenge Level:

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Natural Sum

Stage: 4 Challenge Level:

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Picture Story

Stage: 4 Challenge Level:

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Square Mean

Stage: 4 Challenge Level:

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Target Six

Stage: 5 Challenge Level:

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

Mechanical Integration

Stage: 5 Challenge Level:

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Polite Numbers

Stage: 5 Challenge Level:

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Pair Squares

Stage: 5 Challenge Level:

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Magic W Wrap Up

Stage: 5 Challenge Level:

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

Modulus Arithmetic and a Solution to Differences

Stage: 5

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Pareq Exists

Stage: 4 Challenge Level:

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Mouhefanggai

Stage: 4

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Euclid's Algorithm II

Stage: 5

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

Stage: 5 Short Challenge Level:

Sort these mathematical propositions into a series of 8 correct statements.

L-triominoes

Stage: 4 Challenge Level:

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Calculating with Cosines

Stage: 4 and 5 Challenge Level:

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

A Long Time at the Till

Stage: 4 and 5 Challenge Level:

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

More Sums of Squares

Stage: 5

Tom writes about expressing numbers as the sums of three squares.