# Search by Topic

#### Resources tagged with Mathematical reasoning & proof similar to Least of All:

Filter by: Content type:
Stage:
Challenge level:

### There are 186 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

### Water Pistols

##### Stage: 5 Challenge Level:

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

### Plus or Minus

##### Stage: 5 Challenge Level:

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

### Proof Sorter - Sum of an AP

##### Stage: 5 Challenge Level:

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

### Generally Geometric

##### Stage: 5 Challenge Level:

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

### To Prove or Not to Prove

##### Stage: 4 and 5

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

### Proof Sorter - Quadratic Equation

##### Stage: 4 and 5 Challenge Level:

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

### Proof Sorter - Geometric Series

##### Stage: 5 Challenge Level:

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

### Direct Logic

##### Stage: 5 Challenge Level:

Can you work through these direct proofs, using our interactive proof sorters?

### The Triangle Game

##### Stage: 3 and 4 Challenge Level:

Can you discover whether this is a fair game?

### Particularly General

##### Stage: 5 Challenge Level:

By proving these particular identities, prove the existence of general cases.

### Telescoping Functions

##### Stage: 5

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

### Where Do We Get Our Feet Wet?

##### Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

### Try to Win

##### Stage: 5

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

### Whole Number Dynamics V

##### Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

### Whole Number Dynamics IV

##### Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

### Whole Number Dynamics III

##### Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

### A Knight's Journey

##### Stage: 4 and 5

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

### Yih or Luk Tsut K'i or Three Men's Morris

##### Stage: 3, 4 and 5 Challenge Level:

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

### Magic Squares II

##### Stage: 4 and 5

An article which gives an account of some properties of magic squares.

### Transitivity

##### Stage: 5

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

### More Sums of Squares

##### Stage: 5

Tom writes about expressing numbers as the sums of three squares.

### What Numbers Can We Make Now?

##### Stage: 3 and 4 Challenge Level:

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

### Sums of Squares and Sums of Cubes

##### Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

### Modulus Arithmetic and a Solution to Differences

##### Stage: 5

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

### Whole Number Dynamics II

##### Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

### Recent Developments on S.P. Numbers

##### Stage: 5

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

### Picturing Pythagorean Triples

##### Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

### Whole Number Dynamics I

##### Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

### Always Perfect

##### Stage: 4 Challenge Level:

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

### Mechanical Integration

##### Stage: 5 Challenge Level:

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

### Quadratic Harmony

##### Stage: 5 Challenge Level:

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

### Flexi Quad Tan

##### Stage: 5 Challenge Level:

As a quadrilateral Q is deformed (keeping the edge lengths constnt) the diagonals and the angle X between them change. Prove that the area of Q is proportional to tanX.

### Polite Numbers

##### Stage: 5 Challenge Level:

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

### Target Six

##### Stage: 5 Challenge Level:

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

### Pair Squares

##### Stage: 5 Challenge Level:

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

### Magic W Wrap Up

##### Stage: 5 Challenge Level:

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

### Postage

##### Stage: 4 Challenge Level:

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

### Proof of Pick's Theorem

##### Stage: 5 Challenge Level:

Follow the hints and prove Pick's Theorem.

### Pythagorean Triples II

##### Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

### Can it Be

##### Stage: 5 Challenge Level:

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

### Pythagorean Triples I

##### Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

### Little and Large

##### Stage: 5 Challenge Level:

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

### Modular Fractions

##### Stage: 5 Challenge Level:

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

### Angle Trisection

##### Stage: 4 Challenge Level:

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

### Modulus Arithmetic and a Solution to Dirisibly Yours

##### Stage: 5

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

### Calculating with Cosines

##### Stage: 4 and 5 Challenge Level:

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

### The Great Weights Puzzle

##### Stage: 4 Challenge Level:

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

### Iffy Logic

##### Stage: 4 and 5 Challenge Level:

Can you rearrange the cards to make a series of correct mathematical statements?

### A Long Time at the Till

##### Stage: 4 and 5 Challenge Level:

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

### More Dicey Decisions

##### Stage: 5 Challenge Level:

The twelve edge totals of a standard six-sided die are distributed symmetrically. Will the same symmetry emerge with a dodecahedral die?