Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

How many tours visit each vertex of a cube once and only once? How many return to the starting point?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

Can you find the areas of the trapezia in this sequence?

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Find the positive integer solutions of the equation (1+1/a)(1+1/b)(1+1/c) = 2

Explore a number pattern which has the same symmetries in different bases.

Four jewellers share their stock. Can you work out the relative values of their gems?

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

Can you explain why a sequence of operations always gives you perfect squares?

An article which gives an account of some properties of magic squares.

Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?