Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Solving the Net:

Filter by: Content type:
Stage:
Challenge level:

There are 183 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

The Triangle Game

Stage: 3 and 4 Challenge Level:

Can you discover whether this is a fair game?

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level:

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Rolling Coins

Stage: 4 Challenge Level:

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

Rotating Triangle

Stage: 3 and 4 Challenge Level:

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Natural Sum

Stage: 4 Challenge Level:

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Fitting In

Stage: 4 Challenge Level:

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

Yih or Luk Tsut K'i or Three Men's Morris

Stage: 3, 4 and 5 Challenge Level:

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Air Nets

Stage: 2, 3, 4 and 5 Challenge Level:

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Stonehenge

Stage: 5 Challenge Level:

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

AMGM

Stage: 4 Challenge Level:

Can you use the diagram to prove the AM-GM inequality?

Three Frogs

Stage: 4 Challenge Level:

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

The Great Weights Puzzle

Stage: 4 Challenge Level:

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Middle Man

Stage: 5 Challenge Level:

Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?

Truth Tables and Electronic Circuits

Stage: 3, 4 and 5

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Triangle Incircle Iteration

Stage: 4 Challenge Level:

Keep constructing triangles in the incircle of the previous triangle. What happens?

Logic, Truth Tables and Switching Circuits

Stage: 3, 4 and 5

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

To Prove or Not to Prove

Stage: 4 and 5

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Proofs with Pictures

Stage: 5

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Sprouts Explained

Stage: 2, 3, 4 and 5

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Classifying Solids Using Angle Deficiency

Stage: 3 and 4 Challenge Level:

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Stage: 4 and 5 Challenge Level:

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Salinon

Stage: 4 Challenge Level:

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Long Short

Stage: 4 Challenge Level:

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Logic, Truth Tables and Switching Circuits Challenge

Stage: 3, 4 and 5

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Picture Story

Stage: 4 Challenge Level:

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

A Long Time at the Till

Stage: 4 and 5 Challenge Level:

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Matter of Scale

Stage: 4 Challenge Level:

Prove Pythagoras' Theorem using enlargements and scale factors.

Stage: 3, 4 and 5 Challenge Level:

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Exhaustion

Stage: 5 Challenge Level:

Find the positive integer solutions of the equation (1+1/a)(1+1/b)(1+1/c) = 2

Proximity

Stage: 4 Challenge Level:

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

Interpolating Polynomials

Stage: 5 Challenge Level:

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Round and Round

Stage: 4 Challenge Level:

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Napoleon's Hat

Stage: 5 Challenge Level:

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

Direct Logic

Stage: 5 Challenge Level:

Can you work through these direct proofs, using our interactive proof sorters?

Proof Sorter - Sum of an AP

Stage: 5 Challenge Level:

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

Proof Sorter - Geometric Series

Stage: 5 Challenge Level:

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

A Computer Program to Find Magic Squares

Stage: 5

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Similarly So

Stage: 4 Challenge Level:

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

Composite Notions

Stage: 4 Challenge Level:

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Euler's Formula and Topology

Stage: 5

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

Mediant

Stage: 4 Challenge Level:

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Number Rules - OK

Stage: 4 Challenge Level:

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Mouhefanggai

Stage: 4

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Square Pair Circles

Stage: 5 Challenge Level:

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Continued Fractions II

Stage: 5

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Where Do We Get Our Feet Wet?

Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Try to Win

Stage: 5

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

Picturing Pythagorean Triples

Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Telescoping Functions

Stage: 5

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Whole Number Dynamics V

Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.