Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Four jewellers possessing respectively eight rubies, ten saphires, a hundred pearls and five diamonds, presented, each from his own stock, one apiece to the rest in token of regard; and they. . . .

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Which of these triangular jigsaws are impossible to finish?

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

Can you work out where the blue-and-red brick roads end?

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

The twelve edge totals of a standard six-sided die are distributed symmetrically. Will the same symmetry emerge with a dodecahedral die?

A introduction to how patterns can be deceiving, and what is and is not a proof.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Can you make sense of the three methods to work out the area of the kite in the square?

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.