Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Which of these triangular jigsaws are impossible to finish?

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Can you work out where the blue-and-red brick roads end?

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.