Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Have a go at being mathematically negative, by negating these statements.

The twelve edge totals of a standard six-sided die are distributed symmetrically. Will the same symmetry emerge with a dodecahedral die?

Sort these mathematical propositions into a series of 8 correct statements.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

An inequality involving integrals of squares of functions.

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

Can you work out where the blue-and-red brick roads end?

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Prove Pythagoras' Theorem using enlargements and scale factors.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

An article which gives an account of some properties of magic squares.

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.