# Search by Topic

#### Resources tagged with Mathematical reasoning & proof similar to Double Angle Triples:

Filter by: Content type:
Stage:
Challenge level:

### There are 183 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

### Euclid's Algorithm II

##### Stage: 5

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

### Our Ages

##### Stage: 4 Challenge Level:

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

### Exhaustion

##### Stage: 5 Challenge Level:

Find the positive integer solutions of the equation (1+1/a)(1+1/b)(1+1/c) = 2

### Proof Sorter - Geometric Series

##### Stage: 5 Challenge Level:

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

### Dalmatians

##### Stage: 4 and 5 Challenge Level:

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

### Pythagoras Proofs

##### Stage: 4 Challenge Level:

Can you make sense of these three proofs of Pythagoras' Theorem?

### Always Perfect

##### Stage: 4 Challenge Level:

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

### Direct Logic

##### Stage: 5 Challenge Level:

Can you work through these direct proofs, using our interactive proof sorters?

### The Triangle Game

##### Stage: 3 and 4 Challenge Level:

Can you discover whether this is a fair game?

### Never Prime

##### Stage: 4 Challenge Level:

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

### Diophantine N-tuples

##### Stage: 4 Challenge Level:

Can you explain why a sequence of operations always gives you perfect squares?

### Proof Sorter - Sum of an AP

##### Stage: 5 Challenge Level:

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

### Proof Sorter - Quadratic Equation

##### Stage: 4 and 5 Challenge Level:

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

### Whole Number Dynamics I

##### Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

### Whole Number Dynamics IV

##### Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

### Ordered Sums

##### Stage: 4 Challenge Level:

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

### Matter of Scale

##### Stage: 4 Challenge Level:

Prove Pythagoras' Theorem using enlargements and scale factors.

### Kite in a Square

##### Stage: 4 Challenge Level:

Can you make sense of the three methods to work out the area of the kite in the square?

### Napoleon's Hat

##### Stage: 5 Challenge Level:

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

### Euler's Squares

##### Stage: 4 Challenge Level:

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

### Proofs with Pictures

##### Stage: 5

Some diagrammatic 'proofs' of algebraic identities and inequalities.

### Impossible Sandwiches

##### Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

### Composite Notions

##### Stage: 4 Challenge Level:

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

### Fractional Calculus III

##### Stage: 5

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

### Similarly So

##### Stage: 4 Challenge Level:

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

### Square Pair Circles

##### Stage: 5 Challenge Level:

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

### Continued Fractions II

##### Stage: 5

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

### Number Rules - OK

##### Stage: 4 Challenge Level:

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

### Mediant

##### Stage: 4 Challenge Level:

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

### A Computer Program to Find Magic Squares

##### Stage: 5

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

### Mouhefanggai

##### Stage: 4

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

### Euler's Formula and Topology

##### Stage: 5

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

### Modulus Arithmetic and a Solution to Differences

##### Stage: 5

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

### Whole Number Dynamics III

##### Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

### A Knight's Journey

##### Stage: 4 and 5

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

### Whole Number Dynamics V

##### Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

### Telescoping Functions

##### Stage: 5

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

### Whole Number Dynamics II

##### Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

### Pythagorean Triples I

##### Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

### Proof of Pick's Theorem

##### Stage: 5 Challenge Level:

Follow the hints and prove Pick's Theorem.

### Pythagorean Triples II

##### Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

### Where Do We Get Our Feet Wet?

##### Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

### Try to Win

##### Stage: 5

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

### Sums of Squares and Sums of Cubes

##### Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

### Transitivity

##### Stage: 5

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

### More Sums of Squares

##### Stage: 5

Tom writes about expressing numbers as the sums of three squares.

### Modulus Arithmetic and a Solution to Dirisibly Yours

##### Stage: 5

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

### Rhombus in Rectangle

##### Stage: 4 Challenge Level:

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

### Recent Developments on S.P. Numbers

##### Stage: 5

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.