# Search by Topic

#### Resources tagged with Mathematical reasoning & proof similar to Strange Rectangle:

Filter by: Content type:
Stage:
Challenge level:

##### Other tags that relate to Strange Rectangle
Quadrilaterals. Circles. Circle theorems. Cosine rule. Fractal. Cyclic. Pythagoras' theorem. Scale factors. Area. Similarity.

### There are 183 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

### Fitting In

##### Stage: 4 Challenge Level:

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

### Matter of Scale

##### Stage: 4 Challenge Level:

Prove Pythagoras' Theorem using enlargements and scale factors.

### Salinon

##### Stage: 4 Challenge Level:

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

### Round and Round

##### Stage: 4 Challenge Level:

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

### Rhombus in Rectangle

##### Stage: 4 Challenge Level:

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

##### Stage: 4 Challenge Level:

A picture is made by joining five small quadrilaterals together to make a large quadrilateral. Is it possible to draw a similar picture if all the small quadrilaterals are cyclic?

### Rotating Triangle

##### Stage: 3 and 4 Challenge Level:

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

### Three Frogs

##### Stage: 4 Challenge Level:

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

### Three Balls

##### Stage: 4 Challenge Level:

A circle has centre O and angle POR = angle QOR. Construct tangents at P and Q meeting at T. Draw a circle with diameter OT. Do P and Q lie inside, or on, or outside this circle?

### Folding Squares

##### Stage: 4 Challenge Level:

The diagonal of a square intersects the line joining one of the unused corners to the midpoint of the opposite side. What do you notice about the line segments produced?

### Lens Angle

##### Stage: 4 Challenge Level:

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

### And So on - and on -and On

##### Stage: 5 Challenge Level:

Can you find the value of this function involving algebraic fractions for x=2000?

### Towering Trapeziums

##### Stage: 4 Challenge Level:

Can you find the areas of the trapezia in this sequence?

### Similarly So

##### Stage: 4 Challenge Level:

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

### Little and Large

##### Stage: 5 Challenge Level:

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

### Pythagorean Triples I

##### Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

### Proof of Pick's Theorem

##### Stage: 5 Challenge Level:

Follow the hints and prove Pick's Theorem.

### Pythagorean Triples II

##### Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

### Rolling Coins

##### Stage: 4 Challenge Level:

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

### Whole Number Dynamics V

##### Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

### Square Pair Circles

##### Stage: 5 Challenge Level:

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

### Long Short

##### Stage: 4 Challenge Level:

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

### Picturing Pythagorean Triples

##### Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

##### Stage: 5 Challenge Level:

As a quadrilateral Q is deformed (keeping the edge lengths constnt) the diagonals and the angle X between them change. Prove that the area of Q is proportional to tanX.

### Pent

##### Stage: 4 and 5 Challenge Level:

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

### Circle Box

##### Stage: 4 Challenge Level:

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

### Encircling

##### Stage: 4 Challenge Level:

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

### Pythagoras Proofs

##### Stage: 4 Challenge Level:

Can you make sense of these three proofs of Pythagoras' Theorem?

### Folding Fractions

##### Stage: 4 Challenge Level:

What fractions can you divide the diagonal of a square into by simple folding?

### Zig Zag

##### Stage: 4 Challenge Level:

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

### Areas and Ratios

##### Stage: 4 Challenge Level:

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

### Kite in a Square

##### Stage: 4 Challenge Level:

Can you make sense of the three methods to work out the area of the kite in the square?

### Calculating with Cosines

##### Stage: 4 and 5 Challenge Level:

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

### Sums of Squares and Sums of Cubes

##### Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

### The Triangle Game

##### Stage: 3 and 4 Challenge Level:

Can you discover whether this is a fair game?

### A Long Time at the Till

##### Stage: 4 and 5 Challenge Level:

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

### More Sums of Squares

##### Stage: 5

Tom writes about expressing numbers as the sums of three squares.

### Modulus Arithmetic and a Solution to Dirisibly Yours

##### Stage: 5

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

### Transitivity

##### Stage: 5

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

### L-triominoes

##### Stage: 4 Challenge Level:

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

### Impossible Sandwiches

##### Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

### Fractional Calculus III

##### Stage: 5

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

### Euclid's Algorithm II

##### Stage: 5

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

### Modulus Arithmetic and a Solution to Differences

##### Stage: 5

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

### Classifying Solids Using Angle Deficiency

##### Stage: 3 and 4 Challenge Level:

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

### Continued Fractions II

##### Stage: 5

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

### The Frieze Tree

##### Stage: 3 and 4

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

### Magic Squares II

##### Stage: 4 and 5

An article which gives an account of some properties of magic squares.

### Whole Number Dynamics III

##### Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.