Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Snooker Frames:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 183 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Magic W Wrap Up

Stage: 5 Challenge Level: Challenge Level:1

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

problem icon

Russian Cubes

Stage: 4 Challenge Level: Challenge Level:1

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

problem icon

Knight Defeated

Stage: 4 Challenge Level: Challenge Level:1

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

problem icon

Transitivity

Stage: 5

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

problem icon

Tree Graphs

Stage: 5 Challenge Level: Challenge Level:1

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

problem icon

Cube Net

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

How many tours visit each vertex of a cube once and only once? How many return to the starting point?

problem icon

Symmetric Tangles

Stage: 4

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

problem icon

Doodles

Stage: 4 Challenge Level: Challenge Level:1

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

problem icon

Postage

Stage: 4 Challenge Level: Challenge Level:1

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

problem icon

Mind Your Ps and Qs

Stage: 5 Short Challenge Level: Challenge Level:2 Challenge Level:2

Sort these mathematical propositions into a series of 8 correct statements.

problem icon

Sperner's Lemma

Stage: 5

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

problem icon

Geometry and Gravity 2

Stage: 3, 4 and 5

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

problem icon

Quadratic Harmony

Stage: 5 Challenge Level: Challenge Level:1

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

problem icon

More Sums of Squares

Stage: 5

Tom writes about expressing numbers as the sums of three squares.

problem icon

Polite Numbers

Stage: 5 Challenge Level: Challenge Level:1

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

problem icon

N000ughty Thoughts

Stage: 4 Challenge Level: Challenge Level:1

How many noughts are at the end of these giant numbers?

problem icon

Some Circuits in Graph or Network Theory

Stage: 4 and 5

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

problem icon

Exhaustion

Stage: 5 Challenge Level: Challenge Level:1

Find the positive integer solutions of the equation (1+1/a)(1+1/b)(1+1/c) = 2

problem icon

Classifying Solids Using Angle Deficiency

Stage: 3 and 4 Challenge Level: Challenge Level:1

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

problem icon

Euler's Formula and Topology

Stage: 5

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

problem icon

Triangle Incircle Iteration

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Keep constructing triangles in the incircle of the previous triangle. What happens?

problem icon

Binomial

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

problem icon

Euclid's Algorithm II

Stage: 5

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

problem icon

Water Pistols

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

problem icon

Direct Logic

Stage: 5 Challenge Level: Challenge Level:1

Can you work through these direct proofs, using our interactive proof sorters?

problem icon

Sprouts Explained

Stage: 2, 3, 4 and 5

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

problem icon

Thousand Words

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Here the diagram says it all. Can you find the diagram?

problem icon

Ordered Sums

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

problem icon

Pair Squares

Stage: 5 Challenge Level: Challenge Level:1

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

problem icon

The Great Weights Puzzle

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

problem icon

Proof of Pick's Theorem

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Follow the hints and prove Pick's Theorem.

problem icon

A Long Time at the Till

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

problem icon

Can it Be

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

problem icon

Diverging

Stage: 5 Challenge Level: Challenge Level:1

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

problem icon

Advent Calendar 2011 - Secondary

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

problem icon

Contrary Logic

Stage: 5 Challenge Level: Challenge Level:1

Can you invert the logic to prove these statements?

problem icon

Rational Roots

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

problem icon

Interpolating Polynomials

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

problem icon

Dodgy Proofs

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These proofs are wrong. Can you see why?

problem icon

Tetra Inequalities

Stage: 5 Challenge Level: Challenge Level:1

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

problem icon

Where Do We Get Our Feet Wet?

Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

problem icon

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

problem icon

An Introduction to Number Theory

Stage: 5

An introduction to some beautiful results of Number Theory

problem icon

Notty Logic

Stage: 5 Challenge Level: Challenge Level:1

Have a go at being mathematically negative, by negating these statements.

problem icon

The Clue Is in the Question

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

problem icon

Proofs with Pictures

Stage: 5

Some diagrammatic 'proofs' of algebraic identities and inequalities.

problem icon

The Triangle Game

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you discover whether this is a fair game?

problem icon

Number Rules - OK

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

problem icon

Whole Number Dynamics IV

Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

problem icon

A Knight's Journey

Stage: 4 and 5

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.