Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

Four jewellers share their stock. Can you work out the relative values of their gems?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Sort these mathematical propositions into a series of 8 correct statements.

Have a go at being mathematically negative, by negating these statements.

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

An inequality involving integrals of squares of functions.

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

Can you work out where the blue-and-red brick roads end?

Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Explore a number pattern which has the same symmetries in different bases.

Prove Pythagoras' Theorem using enlargements and scale factors.