Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

Four jewellers share their stock. Can you work out the relative values of their gems?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Can you work out where the blue-and-red brick roads end?

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?