Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Biggest Bendy:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 185 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Cyclic Quad Jigsaw

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A picture is made by joining five small quadrilaterals together to make a large quadrilateral. Is it possible to draw a similar picture if all the small quadrilaterals are cyclic?

problem icon

Without Calculus

Stage: 5 Challenge Level: Challenge Level:1

Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.

problem icon

Little and Large

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

problem icon

Lens Angle

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

problem icon

Three Ways

Stage: 5 Challenge Level: Challenge Level:1

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

problem icon

Quads

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

The circumcentres of four triangles are joined to form a quadrilateral. What do you notice about this quadrilateral as the dynamic image changes? Can you prove your conjecture?

problem icon

Long Short

Stage: 4 Challenge Level: Challenge Level:1

A quadrilateral inscribed in a unit circle has sides of lengths s1, s2, s3 and s4 where s1 ≤ s2 ≤ s3 ≤ s4. Find a quadrilateral of this type for which s1= sqrt2 and show s1 cannot. . . .

problem icon

Encircling

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

problem icon

Find the Fake

Stage: 4 Challenge Level: Challenge Level:1

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

problem icon

Zig Zag

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

problem icon

Flexi Quad Tan

Stage: 5 Challenge Level: Challenge Level:1

As a quadrilateral Q is deformed (keeping the edge lengths constnt) the diagonals and the angle X between them change. Prove that the area of Q is proportional to tanX.

problem icon

Fitting In

Stage: 4 Challenge Level: Challenge Level:1

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

problem icon

Largest Product

Stage: 3 and 4 Challenge Level: Challenge Level:1

Which set of numbers that add to 10 have the largest product?

problem icon

Big, Bigger, Biggest

Stage: 5 Challenge Level: Challenge Level:1

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

problem icon

Similarly So

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

problem icon

Three Balls

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A circle has centre O and angle POR = angle QOR. Construct tangents at P and Q meeting at T. Draw a circle with diameter OT. Do P and Q lie inside, or on, or outside this circle?

problem icon

Pythagoras Proofs

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make sense of these three proofs of Pythagoras' Theorem?

problem icon

Picturing Pythagorean Triples

Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

problem icon

Rhombus in Rectangle

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

problem icon

How Many Solutions?

Stage: 5 Challenge Level: Challenge Level:1

Find all the solutions to the this equation.

problem icon

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

problem icon

Calculating with Cosines

Stage: 5 Challenge Level: Challenge Level:1

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

problem icon

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

problem icon

Kite in a Square

Stage: 4 Challenge Level: Challenge Level:1

Can you make sense of the three methods to work out the area of the kite in the square?

problem icon

Gift of Gems

Stage: 4 Challenge Level: Challenge Level:1

Four jewellers possessing respectively eight rubies, ten saphires, a hundred pearls and five diamonds, presented, each from his own stock, one apiece to the rest in token of regard; and they. . . .

problem icon

Square Pair Circles

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

problem icon

Interpolating Polynomials

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

problem icon

Areas and Ratios

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

problem icon

Round and Round

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

problem icon

Matter of Scale

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Prove Pythagoras Theorem using enlargements and scale factors.

problem icon

Circle Box

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

problem icon

Pareq Exists

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

problem icon

Number Rules - OK

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

problem icon

Impossible Sandwiches

Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

problem icon

Fractional Calculus III

Stage: 5

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

problem icon

Classifying Solids Using Angle Deficiency

Stage: 3 and 4 Challenge Level: Challenge Level:1

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

problem icon

Mediant

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

problem icon

A Computer Program to Find Magic Squares

Stage: 5

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

problem icon

Mouhefanggai

Stage: 4

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

problem icon

Euler's Formula and Topology

Stage: 5

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

problem icon

Proofs with Pictures

Stage: 5

Some diagrammatic 'proofs' of algebraic identities and inequalities.

problem icon

The Triangle Game

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you discover whether this is a fair game?

problem icon

Sums of Squares and Sums of Cubes

Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum orf two or more cubes.

problem icon

Telescoping Functions

Stage: 5

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

problem icon

Where Do We Get Our Feet Wet?

Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

problem icon

Try to Win

Stage: 5

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

problem icon

Whole Number Dynamics V

Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

problem icon

Whole Number Dynamics IV

Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

problem icon

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

problem icon

Whole Number Dynamics III

Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.