Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum orf two or more cubes.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

A introduction to how patterns can be deceiving, and what is and is not a proof.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square. Three of the numbers that he found are a = 18530, b=65570, c=45986. Find the fourth number, x. You. . . .

Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Can you work out where the blue-and-red brick roads end?

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Clearly if a, b and c are the lengths of the sides of a triangle and the triangle is equilateral then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true, and if so can you prove it? That is if. . . .