Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Absurdity Again:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 183 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

How Many Solutions?

Stage: 5 Challenge Level: Challenge Level:1

Find all the solutions to the this equation.

problem icon

Rational Roots

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

problem icon

Janine's Conjecture

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

Plus or Minus

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

problem icon

Diverging

Stage: 5 Challenge Level: Challenge Level:1

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

problem icon

Three Ways

Stage: 5 Challenge Level: Challenge Level:1

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

problem icon

Common Divisor

Stage: 4 Challenge Level: Challenge Level:1

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

problem icon

Target Six

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

problem icon

Pair Squares

Stage: 5 Challenge Level: Challenge Level:1

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

problem icon

Mechanical Integration

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

problem icon

Square Mean

Stage: 4 Challenge Level: Challenge Level:1

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

problem icon

Polynomial Relations

Stage: 5 Challenge Level: Challenge Level:1

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

problem icon

Archimedes and Numerical Roots

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

problem icon

AMGM

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you use the diagram to prove the AM-GM inequality?

problem icon

Proof Sorter - Quadratic Equation

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

problem icon

Leonardo's Problem

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

problem icon

Interpolating Polynomials

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

problem icon

Quadratic Harmony

Stage: 5 Challenge Level: Challenge Level:1

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

problem icon

Can it Be

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

problem icon

Golden Eggs

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

problem icon

Unit Interval

Stage: 4 and 5 Challenge Level: Challenge Level:1

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

problem icon

Thousand Words

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Here the diagram says it all. Can you find the diagram?

problem icon

The Clue Is in the Question

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

problem icon

Pythagoras Proofs

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make sense of these three proofs of Pythagoras' Theorem?

problem icon

Mediant

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

problem icon

Proofs with Pictures

Stage: 5

Some diagrammatic 'proofs' of algebraic identities and inequalities.

problem icon

Where Do We Get Our Feet Wet?

Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

problem icon

Telescoping Functions

Stage: 5

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

problem icon

Look Before You Leap

Stage: 5 Challenge Level: Challenge Level:1

Relate these algebraic expressions to geometrical diagrams.

problem icon

Transitivity

Stage: 5

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

problem icon

More Sums of Squares

Stage: 5

Tom writes about expressing numbers as the sums of three squares.

problem icon

Multiplication Square

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Power Quady

Stage: 5 Challenge Level: Challenge Level:1

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

problem icon

Tetra Inequalities

Stage: 5 Challenge Level: Challenge Level:1

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

problem icon

An Introduction to Number Theory

Stage: 5

An introduction to some beautiful results of Number Theory

problem icon

Without Calculus

Stage: 5 Challenge Level: Challenge Level:1

Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.

problem icon

The Triangle Game

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you discover whether this is a fair game?

problem icon

Impossible Sandwiches

Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

problem icon

Euclid's Algorithm II

Stage: 5

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

problem icon

Converse

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

problem icon

Modulus Arithmetic and a Solution to Dirisibly Yours

Stage: 5

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

problem icon

Continued Fractions II

Stage: 5

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

problem icon

Diophantine N-tuples

Stage: 4 Challenge Level: Challenge Level:1

Can you explain why a sequence of operations always gives you perfect squares?

problem icon

Square Pair Circles

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

problem icon

Composite Notions

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

problem icon

Number Rules - OK

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

problem icon

Mouhefanggai

Stage: 4

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

problem icon

Euler's Formula and Topology

Stage: 5

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

problem icon

A Computer Program to Find Magic Squares

Stage: 5

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

problem icon

Basic Rhythms

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Explore a number pattern which has the same symmetries in different bases.