Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Can you find the value of this function involving algebraic fractions for x=2000?

Can you make sense of these three proofs of Pythagoras' Theorem?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Relate these algebraic expressions to geometrical diagrams.

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Can you work out where the blue-and-red brick roads end?

Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.