Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

A quadrilateral inscribed in a unit circle has sides of lengths s1, s2, s3 and s4 where s1 ≤ s2 ≤ s3 ≤ s4. Find a quadrilateral of this type for which s1= sqrt2 and show s1 cannot. . . .

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

An article which gives an account of some properties of magic squares.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

What fractions can you divide the diagonal of a square into by simple folding?

Can you work through these direct proofs, using our interactive proof sorters?

Can you rearrange the cards to make a series of correct mathematical statements?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Can you make sense of these three proofs of Pythagoras' Theorem?

Have a go at being mathematically negative, by negating these statements.

Can you make sense of the three methods to work out the area of the kite in the square?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Prove Pythagoras Theorem using enlargements and scale factors.