Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Can you work through these direct proofs, using our interactive proof sorters?

Have a go at being mathematically negative, by negating these statements.

By proving these particular identities, prove the existence of general cases.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Sort these mathematical propositions into a series of 8 correct statements.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

Explore a number pattern which has the same symmetries in different bases.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Prove Pythagoras' Theorem using enlargements and scale factors.

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...