Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum orf two or more cubes.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

A quadrilateral inscribed in a unit circle has sides of lengths s1, s2, s3 and s4 where s1 ≤ s2 ≤ s3 ≤ s4. Find a quadrilateral of this type for which s1= sqrt2 and show s1 cannot. . . .

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

An article which gives an account of some properties of magic squares.

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Can you work through these direct proofs, using our interactive proof sorters?

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

A introduction to how patterns can be deceiving, and what is and is not a proof.

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree. . . .

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.