Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Ab Surd Ity:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 186 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Plus or Minus

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

problem icon

Golden Eggs

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

problem icon

Ordered Sums

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

problem icon

Sums of Squares and Sums of Cubes

Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

problem icon

How Many Solutions?

Stage: 5 Challenge Level: Challenge Level:1

Find all the solutions to the this equation.

problem icon

Power Quady

Stage: 5 Challenge Level: Challenge Level:1

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

problem icon

Cosines Rule

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

problem icon

Binomial

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

problem icon

Square Mean

Stage: 4 Challenge Level: Challenge Level:1

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

problem icon

L-triominoes

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

problem icon

Big, Bigger, Biggest

Stage: 5 Challenge Level: Challenge Level:1

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

problem icon

A Biggy

Stage: 4 Challenge Level: Challenge Level:1

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

problem icon

The Root Cause

Stage: 5 Challenge Level: Challenge Level:1

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

problem icon

Janine's Conjecture

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

Sperner's Lemma

Stage: 5

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

problem icon

On the Importance of Pedantry

Stage: 3, 4 and 5

A introduction to how patterns can be deceiving, and what is and is not a proof.

problem icon

Proof Sorter - Quadratic Equation

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

problem icon

Dalmatians

Stage: 4 and 5 Challenge Level: Challenge Level:1

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

problem icon

For What?

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

problem icon

Sixational

Stage: 4 and 5 Challenge Level: Challenge Level:1

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

problem icon

Pair Squares

Stage: 5 Challenge Level: Challenge Level:1

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

problem icon

Power Mad!

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

problem icon

Pent

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

problem icon

Perfectly Square

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The sums of the squares of three related numbers is also a perfect square - can you explain why?

problem icon

Three Frogs

Stage: 4 Challenge Level: Challenge Level:1

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

problem icon

The Golden Ratio, Fibonacci Numbers and Continued Fractions.

Stage: 4

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

problem icon

Sprouts Explained

Stage: 2, 3, 4 and 5

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

problem icon

Direct Logic

Stage: 5 Challenge Level: Challenge Level:1

Can you work through these direct proofs, using our interactive proof sorters?

problem icon

Square Pair Circles

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

problem icon

Where Do We Get Our Feet Wet?

Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

problem icon

Quadratic Harmony

Stage: 5 Challenge Level: Challenge Level:1

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

problem icon

More Sums of Squares

Stage: 5

Tom writes about expressing numbers as the sums of three squares.

problem icon

Modulus Arithmetic and a Solution to Dirisibly Yours

Stage: 5

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

problem icon

Proofs with Pictures

Stage: 5

Some diagrammatic 'proofs' of algebraic identities and inequalities.

problem icon

Archimedes and Numerical Roots

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

problem icon

Target Six

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

problem icon

Tree Graphs

Stage: 5 Challenge Level: Challenge Level:1

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

problem icon

Pythagorean Golden Means

Stage: 5 Challenge Level: Challenge Level:1

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

problem icon

Rational Roots

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

problem icon

Particularly General

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

By proving these particular identities, prove the existence of general cases.

problem icon

Transitivity

Stage: 5

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

problem icon

Russian Cubes

Stage: 4 Challenge Level: Challenge Level:1

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

problem icon

Recent Developments on S.P. Numbers

Stage: 5

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

problem icon

Modulus Arithmetic and a Solution to Differences

Stage: 5

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

problem icon

Road Maker

Stage: 4 and 5 Challenge Level: Challenge Level:1

Which of these roads will satisfy a Munchkin builder?

problem icon

Folding Fractions

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

What fractions can you divide the diagonal of a square into by simple folding?

problem icon

Exponential Intersection

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can the pdfs and cdfs of an exponential distribution intersect?

problem icon

The Triangle Game

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you discover whether this is a fair game?

problem icon

Fractional Calculus III

Stage: 5

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

problem icon

Impossible Sandwiches

Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.