Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

Can you work through these direct proofs, using our interactive proof sorters?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

The twelve edge totals of a standard six-sided die are distributed symmetrically. Will the same symmetry emerge with a dodecahedral die?

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

Can you explain why a sequence of operations always gives you perfect squares?

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

By proving these particular identities, prove the existence of general cases.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Prove Pythagoras' Theorem using enlargements and scale factors.