Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

Prove Pythagoras Theorem using enlargements and scale factors.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Can you rearrange the cards to make a series of correct mathematical statements?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

An article which gives an account of some properties of magic squares.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.