Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

Prove Pythagoras Theorem using enlargements and scale factors.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Can you rearrange the cards to make a series of correct mathematical statements?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

Have a go at being mathematically negative, by negating these statements.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Can you work through these direct proofs, using our interactive proof sorters?

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

Can you make sense of the three methods to work out the area of the kite in the square?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?