Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Complex Partial Fractions:

Filter by: Content type:
Stage:
Challenge level:

There are 185 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

Thousand Words

Stage: 5 Challenge Level:

Here the diagram says it all. Can you find the diagram?

Direct Logic

Stage: 5 Challenge Level:

Can you work through these direct proofs, using our interactive proof sorters?

To Prove or Not to Prove

Stage: 4 and 5

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Janine's Conjecture

Stage: 4 Challenge Level:

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Target Six

Stage: 5 Challenge Level:

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

Diverging

Stage: 5 Challenge Level:

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Stage: 4 and 5 Challenge Level:

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Proof Sorter - Geometric Series

Stage: 5 Challenge Level:

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

Whole Number Dynamics IV

Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

Whole Number Dynamics V

Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Telescoping Functions

Stage: 5

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Unit Interval

Stage: 4 and 5 Challenge Level:

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Calculating with Cosines

Stage: 4 and 5 Challenge Level:

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Sperner's Lemma

Stage: 5

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Sprouts Explained

Stage: 2, 3, 4 and 5

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

More Sums of Squares

Stage: 5

Tom writes about expressing numbers as the sums of three squares.

Interpolating Polynomials

Stage: 5 Challenge Level:

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Golden Eggs

Stage: 5 Challenge Level:

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

Water Pistols

Stage: 5 Challenge Level:

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Where Do We Get Our Feet Wet?

Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Yih or Luk Tsut K'i or Three Men's Morris

Stage: 3, 4 and 5 Challenge Level:

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Impossible Sandwiches

Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Polynomial Relations

Stage: 5 Challenge Level:

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Transitivity

Stage: 5

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

Continued Fractions II

Stage: 5

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Square Mean

Stage: 4 Challenge Level:

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Sums of Squares and Sums of Cubes

Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

The Triangle Game

Stage: 3 and 4 Challenge Level:

Can you discover whether this is a fair game?

Long Short

Stage: 4 Challenge Level:

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

Mouhefanggai

Stage: 4

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Proof: A Brief Historical Survey

Stage: 4 and 5

If you think that mathematical proof is really clearcut and universal then you should read this article.

Recent Developments on S.P. Numbers

Stage: 5

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

Whole Number Dynamics III

Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Some Circuits in Graph or Network Theory

Stage: 4 and 5

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Tetra Inequalities

Stage: 5 Challenge Level:

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

Stage: 3, 4 and 5 Challenge Level:

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Tree Graphs

Stage: 5 Challenge Level:

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

Notty Logic

Stage: 5 Challenge Level:

Have a go at being mathematically negative, by negating these statements.

The Clue Is in the Question

Stage: 5 Challenge Level:

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

Converse

Stage: 4 Challenge Level:

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

A Long Time at the Till

Stage: 4 and 5 Challenge Level:

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Stage: 5 Short Challenge Level:

Can you work out where the blue-and-red brick roads end?

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Proof of Pick's Theorem

Stage: 5 Challenge Level:

Follow the hints and prove Pick's Theorem.

Stage: 5 Challenge Level:

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.