Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Prove Pythagoras' Theorem using enlargements and scale factors.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

What can you say about the common difference of an AP where every term is prime?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

An article which gives an account of some properties of magic squares.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Can you work through these direct proofs, using our interactive proof sorters?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Have a go at being mathematically negative, by negating these statements.