This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Can you work through these direct proofs, using our interactive proof sorters?

Explore a number pattern which has the same symmetries in different bases.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

If you think that mathematical proof is really clearcut and universal then you should read this article.

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Show that the infinite set of finite (or terminating) binary sequences can be written as an ordered list whereas the infinite set of all infinite binary sequences cannot.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Can you rearrange the cards to make a series of correct mathematical statements?

Freddie Manners, of Packwood Haugh School in Shropshire solved an alphanumeric without using the extra information supplied and this article explains his reasoning.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Can you explain why a sequence of operations always gives you perfect squares?

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

Have a go at being mathematically negative, by negating these statements.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

By proving these particular identities, prove the existence of general cases.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.