Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Can you find the value of this function involving algebraic fractions for x=2000?

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Can you make sense of these three proofs of Pythagoras' Theorem?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

The sums of the squares of three related numbers is also a perfect square - can you explain why?

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Relate these algebraic expressions to geometrical diagrams.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.