In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Keep constructing triangles in the incircle of the previous triangle. What happens?

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Freddie Manners, of Packwood Haugh School in Shropshire solved an alphanumeric without using the extra information supplied and this article explains his reasoning.

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Show that the infinite set of finite (or terminating) binary sequences can be written as an ordered list whereas the infinite set of all infinite binary sequences cannot.

Prove Pythagoras' Theorem using enlargements and scale factors.

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

Explore a number pattern which has the same symmetries in different bases.

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

An article which gives an account of some properties of magic squares.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.