Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

I am exactly n times my daughter's age. In m years I shall be exactly (n-1) times her age. In m2 years I shall be exactly (n-2) times her age. After that I shall never again be an exact multiple of. . . .

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to. . . .

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square. Three of the numbers that he found are a = 18530, b=65570, c=45986. Find the fourth number, x. You. . . .

Take any whole number q. Calculate q^2 - 1. Factorize q^2-1 to give two factors a and b (not necessarily q+1 and q-1). Put c = a + b + 2q . Then you will find that ab+1 , bc+1 and ca+1 are all. . . .

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Choose any three by three square of dates on a calendar page. Circle any number on the top row, put a line through the other numbers that are in the same row and column as your circled number. Repeat. . . .

This jar used to hold perfumed oil. It contained enough oil to fill granid silver bottles. Each bottle held enough to fill ozvik golden goblets and each goblet held enough to fill vaswik crystal. . . .

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

Make an eight by eight square, the layout is the same as a chessboard. You can print out and use the square below. What is the area of the square? Divide the square in the way shown by the red dashed. . . .

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Is it true that any convex hexagon will tessellate if it has a pair of opposite sides that are equal, and three adjacent angles that add up to 360 degrees?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Here are some examples of 'cons', and see if you can figure out where the trick is.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Can you make sense of these three proofs of Pythagoras' Theorem?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...